|
In statistics, the Siegel–Tukey test, named after Sidney Siegel and John Tukey, is a non-parametric test which may be applied to data measured at least on an ordinal scale. It tests for differences in scale between two groups. The test is used to determine if one of two groups of data tends to have more widely dispersed values than the other. In other words, the test determines whether one of the two groups tends to move, sometimes to the right, sometimes to the left, but away from the center (of the ordinal scale). The test was published in 1960 by Sidney Siegel and John Wilder Tukey in the ''Journal of the American Statistical Association'', in the article "A Nonparametric Sum of Ranks Procedure for Relative Spread in Unpaired Samples." == Principle == The principle is based on the following idea: Suppose there are two groups A and B with ''n'' observations for the first group and ''m'' observations for the second (so there are ''N'' = ''n'' + ''m'' total observations). If all ''N'' observations are arranged in ascending order, it can be expected that the values of the two groups will be mixed or sorted randomly, if there are no differences between the two groups (following the null hypothesis H0). This would mean that among the ranks of extreme (high and low) scores, there would be similar values from Group A and Group B. If, say, Group A were more inclined to extreme values (the alternative hypothesis H1), then there will be a higher proportion of observations from group A with low or high values, and a reduced proportion of values at the center. : * Hypothesis H0: σ2A = σ2B & MeA = MeB (where σ2 and Me are the variance and the median, respectively) : * Hypothesis H1: σ2A > σ2B 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Siegel–Tukey test」の詳細全文を読む スポンサード リンク
|